Acidic pH amplifies iron-mediated lipid peroxidation in cells.
نویسندگان
چکیده
The goal of our study was to investigate the mechanism by which changes in extracellular pH influence lipid peroxidation processes. Ferrous iron can react with hydroperoxides, via a Fenton-type reaction, to initiate free radical chain processes. Iron is more soluble at lower pH values, therefore we hypothesized that decreasing the environmental pH would lead to increased iron-mediated lipid peroxidation. We used Photofrin, a photosensitizer that produces singlet oxygen, to introduce lipid hydroperoxides into leukemia cells (HL-60, K-562, and L1210). Singlet oxygen reacts with the PUFA of cells producing lipid hydroperoxides. Using EPR spin trapping with POBN, free radical formation from HL-60 cells was only detected when Photofrin, light, and ferrous iron were present. Free radical formation increased with increasing iron concentration; in the absence of extracellular iron, radical formation was below the limit of detection and lipid hydroperoxides accumulated in the membrane. In the presence of iron, lipid-derived radical formation in cells is pH dependent; the lower the extracellular pH (7.5-5.5), the higher the free radical flux; the lower the pH, the greater the membrane permeability induced in K-562 cells, as determined by trypan blue dye exclusion. These data demonstrate that lipid peroxidation processes, mediated by iron, are enhanced with decreasing extracellular pH. Thus, acidic pH not only releases iron from "safe" sites, but this iron will also be more damaging.
منابع مشابه
Iron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملIron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملAluminum facilitation of the iron-mediated oxidation of DOPA to melanin.
Aluminum, a trivalent cation unable to undergo redox reactions, is shown to faciliate iron-initiated DOPA oxidation in the melanin pathway under acidic condition of pH 5.5, which is a favored medium for aluminum facilitation of iron-induced lipid peroxidation. In the process of oxidation of DOPA to melanin in the presence of the metal ions, Fe3+ and H2O2 oxidize DOPA to dopachrome (DC), then Al...
متن کاملThe role of iron in ferritin- and haemosiderin-mediated lipid peroxidation in liposomes.
Ferritin and haemosiderin were shown, by the measurement of malondialdehyde production and loss of polyunsaturated fatty acids, to stimulate lipid peroxidation in liposomes. At pH 7.4 ascorbate was additionally required to achieve peroxidation; however, peroxidation occurred at pH 4.5 in the presence of iron-proteins alone. The damage was completely inhibited by the incorporation of chain-break...
متن کاملFerrous iron release from transferrin by human neutrophil-derived superoxide anion: effect of pH and iron saturation.
The ability of superoxide anion (O2-) from stimulated human neutrophils (PMNs) to release ferrous iron (Fe2+) from transferrin was assessed. At pH 7.4, unstimulated PMNs released minimal amounts of O2- and failed to facilitate the release of Fe2+ from holosaturated transferrin. In contrast, incubation of phorbol myristate acetate (PMA)-stimulated PMNs with holosaturated transferrin at pH 7.4 en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Free radical biology & medicine
دوره 28 8 شماره
صفحات -
تاریخ انتشار 2000